Efectos de la actividad física sobre el envejecimiento cerebral saludable. Revisión sistemática
Artículo revisado por pares
Enviado: 23-04-2023
Revisado: 09-05-2023
Aceptado: 06-06-2023
Publicado: 07-06-2023
Editor: Dr. William Castillo González, https://orcid.org/0000-0003-3007-920X
DOI:
https://doi.org/10.56294/saludcyt2023415Palabras clave:
Actividad física, Persona mayor, Envejecimiento saludable, Cerebro, CogniciónResumen
Introducción: Aunque existe consenso en que la actividad física desempeña un papel fundamental en el envejecimiento exitoso, es necesario investigar el impacto real que tiene en el cerebro.
Objetivo: El objetivo de este estudio es identificar los efectos de la actividad física en el envejecimiento cerebral saludable, analizando los cambios estructurales y/o funcionales que puede generar en el cerebro. Además, se pretende determinar si la participación regular en actividad física a lo largo de toda la vida es un factor predictivo de un envejecimiento cerebral saludable.
Métodos: Se llevó a cabo una revisión sistemática en tres bases de datos: Web of Science, Scopus y PubMed, siguiendo las directrices PRISMA-P. Se incluyeron artículos publicados entre 2010 y 2023. Se consideraron estudios experimentales, cuasi-experimentales, ensayos clínicos y estudios de cohorte.
Resultados: Se identificaron un total de 63 artículos, de los cuales se incluyeron 17 en el análisis. De estos, 14 informaron sobre efectos significativos de la actividad física en el envejecimiento cerebral saludable, de los cuales 11 evidenciaron beneficios estructurales, 2 funcionales y 1 mixto. Además, 13 artículos demostraron que participar en actividad física a lo largo de la vida favorece el envejecimiento cognitivo.
Conclusiones: El desarrollo de actividad física a lo largo de toda la vida conlleva beneficios estructurales y/o funcionales en el cerebro durante la vejez, los cuales se relacionan con un mejor rendimiento cognitivo. Además, se sugiere que la participación regular en actividad física puede ser un factor predictivo de un envejecimiento cerebral saludable. Sin embargo, persiste la controversia en cuanto al tipo, duración e intensidad de la actividad física que reúne las condiciones necesarias para promover un envejecimiento cognitivo óptimo y que pueda ser utilizada como medida estándar para la promoción de un envejecimiento cerebral saludable.
Métricas
Citas
Miko HC, Zillmann N, Ring-Dimitriou S, Dorner TE, Titze S, Bauer R. Effects of Physical Activity on Health. Gesundheitswesen. 2020;82(3):184-195. https://doi.org/10.1055/a-1217-0549
Domingos C, Pego JM, Santos NC. Effects of physical activity on brain function and structure in older adults: A systematic review. Behav Brain Res. 2021;402:113061. https://doi.org/10.1016/j.bbr.2020.113061
Bauman A, Merom D, Bull FC, Buchner DM, Singh MAF. Updating the Evidence for Physical Activity: Summative Reviews of the Epidemiological Evidence, Prevalence, and Interventions to Promote "Active Aging". Gerontologist. 2016;56:268-80. https://doi.org/10.1093/geront/gnw031
Angulo J, El Assar M, Álvarez-Bustos A, Rodríguez-Mañas L. Physical activity and exercise: Strategies to manage frailty. Redox Biology. 2020;35:101513. https://doi.org/10.1016/j.redox.2020.101513
Elezi B., Abazaj E., Kasa M.,Topi, S. Prevention of Frailty in the Elderly through Physical Activity and Nutrition. J Geriatr Med Gerontol. 2020;6(1). https://doi.org/10.23937/2469-5858/1510084
Haeger A, Costa AS, Schulz JB, Reetz K. Cerebral changes improved by physical activity during cognitive decline: A systematic review on MRI studies. NeuroImage Clin. 2019;23:101933, https://doi.org/10.1016/j.nicl.2019.101933
Márquez DX, Aguinaga S, Vásquez PM, Conroy DE, Erickson KI, Hillman C, et al. A systematic review of physical activity and quality of life and well-being. Transl Behav Med. 2020;10(5):1098-1109. https://doi.org/10.1093/tbm/ibz198
Islam MR, Valaris S, Young MF, Haley EB, Luo R, Bond SF, et al. Exercise hormone irisin is a critical regulator of cognitive function. Nat Metab. 2021;3(8):1058-70. https://doi.org/10.1038/s42255-021-00438-z
Wahl D, Cavalier AN, LaRocca TJ. Novel Strategies for Healthy Brain Aging. Exerc Sport Sci Rev. 2021;49(2):115-25. https://doi.org/10.1249/JES.0000000000000242
Rolland Y, van Kan GA, Vellas B. Healthy Brain Aging: Role of Exercise and Physical Activity. Clin Geriatr Med. 2010;26(1):75-87. https://doi.org/10.1016/j.cger.2009.11.002
Fernández F, Nazar G, Alcover CM. Active aging model: causes, indicators and predictors in chilean elderly people. Acción Psicológica. 2018;15(2):109-28. https://doi.org/10.5944/ap.15.2.22903
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci. 2019;13:363. https://doi.org/10.3389/fncel.2019.00363
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906. https://doi.org/10.1016/j.jclinepi.2021.02.003
Ma L., Wang Y, Yang Z, Huang D, Weng H, Zeng X. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better? Mil Med Res. 2020;7:(1). https://doi.org/10.1186/s40779-020-00238-8
Guiney H, Lucas SJ, Cotter JD, Machado L. Investigating links between habitual physical activity, cerebrovascular function, and cognitive control in healthy older adults. Neuropsychologia. 2019;125:2-9. https://doi.org/10.1016/j.neuropsychologia.2019.01.011
Engeroff T, Fuzeki E, Vogt L, Fleckenstein J, Schwarz S, Matura S, et al. Is Objectively Assessed Sedentary Behavior, Physical Activity and Cardiorespiratory Fitness Linked to Brain Plasticity Outcomes in Old Age? Neuroscience. 2018; 388:384-92. https://doi.org/10.1016/j.neuroscience.2018.07.050
Oberlin LE, Verstynen TD, Burzynska AZ, Voss MW, Prakash RS, Chaddock-Heyman L, et al. White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults. Neuroimage. 2016; 131:91-101. https://doi.org/10.1016/j.neuroimage.2015.09.053
Sexton CE, Betts JF, Dennis A, Doherty A, Leeson P, Holloway C, et al. The effects of an aerobic training intervention on cognition, grey matter volumes and white matter microstructure. Physiol Behav. 2020; 223:112923. https://doi.org/10.1016/j.physbeh.2020.112923
Chang YK, Huang CJ, Chen KF, Hung TM. Physical activity and working memory in healthy older adults: an ERP study. Psychophysiology. 2013;50(11):1174-82. https://doi.org/10.1111/psyp.12089
Clark CM, Guadagni V, Mazerolle EL, Hill M, Hogan DB, Pike GB, et al. Effect of aerobic exercise on white matter microstructure in the aging brain. Behav Brain Res. 2019;373:112042. https://doi.org/10.1016/j.bbr.2019.112042
Eyme KM, Domin M, Gerlach FH, Hosten N, Schmidt CO, Gaser C, et al. Physically active life style is associated with increased grey matter brain volume in a medial parieto-frontal network. Behav Brain Res. 2019;359:215-22. https://doi.org/10.1016/j.bbr.2018.10.042
Chen FT, Erickson KI, Huang H, Chang YK. The association between physical fitness parameters and white matter microstructure in older adults: A diffusion tensor imaging study. Psychophysiology. 2020;57(5):1-11. https://doi.org/10.1111/psyp.13539
Gajewski PD, Falkenstein M. Lifelong physical activity and executive functions in older age assessed by memory based task switching. Neuropsychologia. 2015;73:195-207. https://doi.org/10.1016/j.neuropsychologia.2015.04.031
Erickson KI, Raji CA, Lopez OL, Becker JT, Rosano C, Newman AB, Gach HM, Thompson PM, Ho AJ, Kuller LH. Physical activity predicts gray matter volume in late adulthood: the Cardiovascular Health Study. Neurology. 2010; 19;75(16):1415-1422. https://doi.org/10.1212/WNL.0b013e3181f88359
Kim BR, Kwon H, Chun MY, Park KD, Lim SM, Jeong JH, et al. White Matter Integrity Is Associated With the Amount of Physical Activity in Older Adults With Super-aging. Front Aging Neurosci. 2020;12:549983. https://doi.org/10.3389/fnagi.2020.549983
Lamont AJ, Mortby ME, Anstey KJ, Sachdev PS, Cherbuin N. Using sulcal and gyral measures of brain structure to investigate benefits of an active lifestyle. NeuroImage. 2014;91:353-9. https://doi.org/10.1016/j.neuroimage.2014.01.008
Northey JM, Rattray B, Pumpa KL, Pryor DJ, Fraser MA, Shaw ME, et al. Objectively measured physical activity is associated with dorsolateral prefrontal cortex volume in older adults. NeuroImage. 2020;221:117150. https://doi.org/10.1016/j.neuroimage.2020.117150
Rowley CD, Bock NA, Deichmann R, Engeroff T, Hattingen E, Hellweg R, et al. Exercise and microstructural changes in the motor cortex of older adults. Euro J Neuroscience. 2020;51(7):1711-22. https://doi.org/10.1111/ejn.14585
Smith JC, Lancaster MA, Nielson KA, Woodard JL, Seidenberg M, Durgerian S, et al. Interactive effects of physical activity and APOE-epsilon4 on white matter tract diffusivity in healthy elders. NeuroImage. 2016;131:102-12. https://doi.org/10.1016/j.neuroimage.2015.08.007
Voss MW, Weng TB, Burzynska AZ, Wong CN, Cooke GE, Clark R, et al. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging. NeuroImage. 2016;131:113-25. https://doi.org/10.1016/j.neuroimage.2015.10.044
Williams VJ, Hayes JP, Forman DE, Salat DH, Sperling RA, Verfaellie M, et al. Cardiorespiratory fitness is differentially associated with cortical thickness in young and older adults. NeuroImage. 2017;146:1084-92. https://doi.org/10.1016/j.neuroimage.2016.10.033
Özsungur F. Gerontechnological factors affecting successful aging of elderly. Aging Male. 2020;23(5):520-532. https://doi.org/10.1080/13685538.2018.1539963
De Godoy L, Alves C, Saavedra, J, Studart-Neto A, Nitrini R, da Costa C, Bisdas S. Understanding brain resilience in superagers: a systematic review. Neuroradiology. 2021: 63:663-683. https://doi.org/10.1007/s00234-020-02562-1
Cook A, Sridhar J, Ohm D, Rademaker A, Mesulam m, Weintraub S, Rogalski E. Rates of cortical atrophy in adults 80 years and older with superior vs average episodic memory. Jama. 2017:317(13):1373-1375. https://doi.org/10.1001/jama.2017.0627
Coelho F, Gobbi S, Andreatto C, Corazza D, Pedroso R, Santos-Galduroz R. Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): A systematic review of experimental studies in the elderly. Arch. Gerontol. Geriatr. 2013; 56(1):10-5. https://doi.org/10.1016/j.archger.2012.06.003
Araque-Martínez M, Artés-Rodríguez E, Ruiz-Montero PJ, Casimiro-Andújar AJ. Physical, cognitive and emotional outcomes in older adults exercisers: A systematic review. J. Hum. Sport Exerc. 2021;16(1075-1093). https://doi.org/10.14198/jhse.2021.16.Proc3.25
Stillman CM, Erickson KI. Physical activity as a model for health neuroscience. Ann N Y Acad Sci. 2018;1428(1):103-11. https://doi.org/10.1111/nyas.13669
Dal Lago JE, Iglesias S, García Osso L, Levy E. Treatment of Pediatric Flexible Flatfoot with Subtalar Arthroereisis: Functional and Radiographic Results. Interamerican Journal of Health Sciences. 2021;(1). https://doi.org/10.59471/ijhsc202112
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Claudio San Martín, Carlos Rojas Zepeda, Fabiola Sáez

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Este artículo se distribuye bajo la licencia Creative Commons Attribution 4.0 License. A menos que se indique lo contrario, el material publicado asociado se distribuye bajo la misma licencia.